

SYNTHESIS, CHARACTERISATION AND ASSESSMENT OF ANTIMICROBIAL ACTIVITY OF DOPED ZINC OXIDE NANOPARTICLES AGAINST SELECTED WATERBORNE PATHOGENS

Dissertation submitted in fulfilment of the requirements for the *M Technologiae* in Biotechnology at Vaal University of Technology

In the Faculty of Applied and Computer Sciences

Department of Biotechnology

Name of Student: Nomasamariya Elsie Volofu

Student number: 207045160

Supervisor: Dr M. Klink

Co-supervisors: Mr N. Laloo and Dr F. Mthunzi

Date: 29 July 2019

Private Bag X021 ~ Vanderbijlpark ~1900 Andries Potaieter Boulevard ~ South Africa

DECLARATION

This work had never been accepted in substance for any degree.

Signed.....

Date.....

ACKNOWLEGDMENTS

I would like to express my gratitude to my Supervisor, Dr M. J. Klink, for his advice and mentorship in the field of chemistry applications. He facilitated this project by his ongoing support all the time.

I would also like to thank my co- supervisors Dr. F. Mthunzi in Chemistry Department and Mr N. Laloo in the area of microbiology, for their support and advices.

Special thanks go to my family for their financial and emotional support.

I would also like to express my gratitude to Mrs S. Takeidza for practical support.

Special thanks goes to the following financial schemes

- 1. NSFAS loan
- 2. NRF bursary and
- 3. VUT award

DEDICATION

This dissertation is dedicated to my family; my sister Cokiswa who fully believed in me and supported me emotionally. My father Thabile Volofu, who groomed and supported me financially to achieve what I have been dreaming of; my mother Louisa Volofu, who trained and nurtured me to become a determined individual. I also dedicate my degree to NRF bursary for paying fees for my research since I have started.

I also thank Mighty God, for his everlasting love. I believe that with his glory I am not too far to reach my destiny.

ABSTRACT

The aim of the study is to synthesise, characterize and assess the antimicrobial activity of cobalt oxide, zinc oxide and cobalt-doped zinc oxide nanoparticles against selected waterborne pathogenic fungi (yeasts and moulds) and bacteria. Various types of oxide based nanomaterial are an attractive option for the disinfection of water due to its high chemical stability and non-toxicity towards human cells. Synthesis of Co -doped ZnO and Co_3O_4 nanoparticles was done through mechanochemical synthesis and urea based synthesis and microwave heating was employed for the preparation of ZnO nanoparticles.

The ZnO nanoparticles were produced in short reaction and it was white color. Cobalt oxide $(Co_{3}O_{4})$ nanoparticles appeared as a pink precipitate but was turned black after being calcined. The synthesis of Co- ZnO nanoparticles was successfully prepared and blue solid was obtained from pink cobalt ion solution. The nanoparticles were characterised by X- Ray Diffraction (XRD), Fourier Infrared Spectroscopy (FTIR), UV–visible spectroscopy, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) (Yang *et al.* 2003).

In this research project, the antibacterial activities of NPs were carried out by well diffusion method and minimum inhibitory concentration (MIC). MIC is the lowest concentration of a chemical, usually a drug, which prevents visible growth of bacterium. Bacterial strains used in the study are: *Salmonella enterica, Escherichia coli, Shigella sonnei* and *Staphylococcus aureus*, yeast and mould is: *Candida albicans* and *Aspergillus niger*. The antimicrobial results obtained showed that ZnO nanoparticles are more effective than Co- ZnO and Co₃O₄ nanoprticles against all the microorganisms used. The toxicity studies were performed using DAPHTOXKIT F and the 24h EC50 and 48h EC50 were calculated according to the

manufactures' instructions. The results showed that Co- ZnO nanoparticles is less toxic to Daphnia magna compared to ZnO and Co_3O_4 NPs.

Key words: Nanoparticles, antimicrobial activity, reactive oxygen species

ABBREVIATIONS

Co_3O_4	Cobalt oxide
DMS	diluted magnetic semiconductors
FTIR	Fourier Infrared Spectroscopy
SEM	Scanning Electron Microscopy
TEM	Transmission Electron Microscopy
UV	Ultra violet
XRD	X- Ray Diffraction
ZnO	Zinc oxide
NP	Nanoparticle
ROS	Reactive Oxygen Species
GSH	(g-L-glutamyl-L-cysteinylglycine) oxidation methods
0511	(g-L-grataniyi-L-Cysteniyigiyenic) Oxidation methods

TABLE OF CONTENTS	PAGE
DECLARATION	ii
ACKNOWLEDGEMENTS	iii
DEDICATION	iv
ABSTRACT	V
ABBREVIATIONS	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
CHAPTER 1	1
INTRODUCTION	1
1.1 BACKGROUND	1
1.2 RATIONALE/MOTIVATION	
1.3 PROBLEM STATEMENT	
1.4 AIM	4
1.5 OBJECTIVES	4
1.6 THESIS OUTLINE	5
CHAPTER 2	6
LITERATURE REVIEW	6
2.1. Waterborne Pathogens	
2.1.1. Escherichia coli	
2.1.2. Vibrio cholera	7
2.1.3. Salmonella	7
2.1.4. Shigella	
2.2 Traditional disinfection methods	

2.2.1. Chlorine	9
2.2.2. Ozone	10
2.2.3. Ultraviolet (UV) light	11
2.3 Preparation methods for synthesis of metal oxides/NPs	11
2.3.1 Sol-gel	12
2.3.2 Reverse micelles	13
2.3.3 Chemical reduction	13
2.3.4 Microwave -assisted synthesis	14
2.4 Characterisation methods	15
2.4.1 UV- Vis Spectroscopy	15
4.2.2 Fourier Infrared Spectroscopy (FTIR)	16
4.3.3 Scanning Electron Microscopy (SEM)	16
2.4.4 Transmission Electron Microscopy (TEM)	16
2.5 Antibacterial activity of ZnO NPs	17
2.5.1 Penetration mechanism of NPs	17
2.5.2 Antibacterial activity	17
2.6 Methods used to assess antimicrobial activity	18
2.6.1 The disk diffusion	18
2.6.2 Minimal inhibitory concentration (MIC)	
2.7 Advanced NPs for disinfection purposes and their nanocomposites	19
2.7.1 ZnO NPs	19
2.7.2 Cobalt NPs	21
2.7.3 Cobalt doped Zinc oxide NPs	22
2.8 Water toxicity	25

CHAPTER 327
3. Research methodology27
3.1 Reagents and chemicals
3.2 Synthesis of nanoparticles- Experimental procedure
3.2.1 Urea based synthesis of ZnO nanoparticles
3.2.2 Synthesis of Co ₃ O ₄ nanoparticles using mechanochemical synthesis
3.2.3 Synthesis of Co- doped ZnO nanoparticles
3.3 Characterisation of the synthesised nanoparticles
3.3.1 FTIR
3.2.2 Uv- Vis spectroscopy
3.2.3 SEM
3.2.4 TEM
3.4 Antibacterial activity
3.4.1 Prerequisites
3.4.2 Agar deep well diffusion
3.4.3 Minimal inhibitory concentration
3.5 Toxicity test using <i>Daphnia magna</i> (Daphtox) kit
CHAPTER 4
4. Charactersation results and discussion36
4.1. Introduction
4.1.1 Synthesized NPs
4.2. Characterisation results
4.1.1 ZnO NPs

4.1.2 Co ₃ O ₄ NPs	
4.1.3 Co –doped ZnO NPs	
4.2 Uv- Vis spectroscopy	
4.3 FTIR spectral analysis	40
4.4 Transmission Electron Microscopy	43
CHAPTER 5	49
5 Antimicrobial results	49
5.1 Antimicrobial tests	
5.1.1 Disc diffusion assay	49
5.1.2 Antibacterial activity of selected bacterial strains	
5.2 Minimal inhibitory concentration	
S. sonnei	63
S. aureus	65
E. coli	67
S. enterica	68
C. albicans	71
A. niger	72
5.3 Toxicity results	74
CHAPTER 6	79
6. COCLUSIONS AND RECOMMENDATIONS	79
6.1 Conclusions	79
6.2 Recommendations	81
Chapter 7	82
References	82

LIST OF TABLES

Table 3.1. Waterborne pathogens
Table 5.1 Mean zone of inhibition (in mm) produced by synthesised ZnO, Co ₃ O ₄ and Co-
ZnO NPs against <i>S. aureus</i>
Table 5.2 Mean zone of inhibition (in mm) produced by synthesised ZnO, Co ₃ O ₄ and Co-
ZnO NPs against S. sonnei
Table 5.3 Mean zone of inhibition (in mm) produced by synthesised ZnO, Co ₃ O ₄ and Co-
ZnO NPs against S. enterica
Table 5.4. Mean zone of inhibition (in mm) produced by synthesised ZnO, $Co_3 O_4$ and Co -
ZnO NPs against <i>E. coli</i>
Table 5.5. Mean zone of inhibition (in mm) produced by synthesised ZnO, $Co_3 O_4$ and Co -
ZnO NPs against A. niger61
Table 5.6 MIC values of synthesised ZnO and Co ₃ O ₄ NPs at different ratios against selected
bacteria
TABLE 5.7: MIC values of synthesised ZnO at different ratios against C. albicans
and <i>A. niger</i>

LIST OF FIGURES

Figure 2.1: Illustration of antibacterial activity17
Figure 3.1: Concentrated salts that are used to prepare standard water
Figure 3.2: Apparatus for the dilution of NPs using standard water
Figure 4. 1: UV-Vis absorption spectrum recorded for ZnO NPs
Figure 4. 2: UV-Vis absorption spectrum recorded for Co_3O_4 NPs
Figure 4.3: Uv- vis spectrum recorded for Co- doped ZnO NPs
Figure 4.4: FTIR results for ZnO NPs at different ratios
Figure 4.5: FTIR results for Co ₃ O ₄ at different ratios
Figure 4.6: FTIR results for Co- ZnO NPs from 0- 10%
Figure 4.7: TEM results for ZnO at different ratios
Figure 4.8: TEM results for Co_3O_4 NPs at different ratios44
Figure 4.9: TEM results for Co doped ZnO NPs at different percentages (a) 1%, (b) 4%, (C)
7% and (d) 10%45
Figure 4.10: SEM results for ZnO NPs at different ratios
Figure 4.11: SEM results for Co_3O_4 NPs at different ratios47
Figure 4.12: SEM results for Co- doped ZnO NPs at different ratios
Figure 5.1: Antibacterial activity (zone of inhibitions) of the biosynthesized
(A) ZnO NPs against S. aureus
(B) Co ₃ O ₄ NPs against <i>S. aureus</i>

(C) Co-ZnO NPs against <i>S. aureus</i>
Figure 5.2: Antibacterial activity (zone of inhibitions) of the biosynthesized
(A) Co ₃ O ₄ NPs against <i>S. sonnei</i>
(B) ZnO NPs against S. sonnei and
(C) Co-ZnO NPs against S. sonnei
Figure 5.3: Antibacterial activity (zone of inhibitions) of the biosynthesized
(A) ZnO NPs against S. enterica55
(B) Co ₃ O ₄ NPs against <i>S. enterica</i> and55
(C) Co-ZnO NPs against S. enterica55
Figure 5.4: Antibacterial activity (zone of inhibitions) of the biosynthesized
(A) ZnO NPs against <i>E. coli</i>
(B) Co ₃ O ₄ NPs against <i>E. coli</i>
(C) Co-ZnO NPs against <i>E. coli</i>
Figure 5.5: Antifungal activity (zone of inhibitions) of the biosynthesized
(A) ZnO NPs against <i>C. albicans</i>
(B) Co ₃ O ₄ NPs against <i>C. albicans</i>
(C) Co-ZnO NPs against <i>C. albicans</i>
Figure 5.6: Antifungal activity (zone of inhibitions) of the biosynthesized
(A) ZnO NPs against A. niger60
(B) Co ₃ O ₄ NPs against <i>A. niger</i> and60

(C) Co-ZnO NPs against A. niger	60
Figure 5.7: MIC results for S. sonnei against Co ₃ O ₄ and ZnO NPs at ratio 1:1 and	11:2
	63
Figure 5.8: MIC results for <i>S. sonnei</i> against ZnO NPs at ratio 1:4 and 2:1	64
Figure 5.9: MIC results for <i>S. aurius</i> against ZnO NPs at ratio 1:1, 1:2 and 2:1	65
Figure 5.10: MIC results for <i>S. aureus</i> against ZnO NPs at ratio 1:4	66
Figure 5.11: Mic results for <i>E. coli</i> against ZnO NPs at ratio 1:1, 1:2, 1:4 and 2:1.	67
Figure 5.12: MIC results for <i>S. enterica</i> against ZnO NPs at 1:1, 1:2, 1:4 and 2:1.	68
Figure 5.13: MIC results for <i>C. albicans</i> against ZnO NPs at 1:1, 1:2, 1:4 and 2:1	71
Figure 5.14: MIC results for <i>A.niger</i> against ZnO NPs at 1:1, 1:2, 1:4 and 2:1	72
Figure 5.15. Predicted mortality at 24 and 48 h of exposure for ZnO NPs	75
Figure 5.16 Predicted mortality at 24 and 48 h of exposure for Co ₃ O ₄ NPs	75
Figure 5.17. Predicted mortality at 24 and 48 h of exposure for Co-ZnO NPs	77